A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis.

نویسندگان

  • Yee-Yung Charng
  • Hsiang-Chin Liu
  • Nai-Yu Liu
  • Wen-Tzu Chi
  • Chun-Neng Wang
  • Shih-Hsun Chang
  • Tsu-Tsuen Wang
چکیده

The expression of heat shock proteins (Hsps) induced by nonlethal heat treatment confers acquired thermotolerance (AT) to organisms against subsequent challenges of otherwise lethal temperature. After the stress signal is removed, AT gradually decays, with decreased Hsps during recovery. AT of sufficient duration is critical for sessile organisms such as plants to survive repeated heat stress in their environment, but little is known regarding its regulation. To identify potential regulatory components, we took a reverse genetics approach by screening for Arabidopsis (Arabidopsis thaliana) T-DNA insertion mutants that show decreased thermotolerance after a long recovery (2 d) under nonstress conditions following an acclimation heat treatment. Among the tested mutants corresponding to 48 heat-induced genes, only the heat shock transcription factor HsfA2 knockout mutant showed an obvious phenotype. Following pretreatment at 37 degrees C, the mutant line was more sensitive to severe heat stress than the wild type after long but not short recovery periods, and this could be complemented by the introduction of a wild-type copy of the HsfA2 gene. Quantitative hypocotyl elongation assay also revealed that AT decayed faster in the absence of HsfA2. Significant reduction in the transcript levels of several highly heat-inducible genes was observed in HsfA2 knockout plants after 4 h recovery or 2 h prolonged heat stress. Immunoblot analysis showed that Hsa32 and class I small Hsp were less abundant in the mutant than in the wild type after long recovery. Our results suggest that HsfA2 as a heat-inducible transactivator sustains the expression of Hsp genes and extends the duration of AT in Arabidopsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth.

Heat shock transcription factors (Hsfs) are the central regulators of the heat shock (HS) stress response in all eukaryotic organisms. HsfA2 is one of the Arabidopsis class A Hsfs, and the induction of HsfA2 expression in response to HS stress is highest among all 21 Arabidopsis Hsfs. In this study, it is reported that basal and acquired thermotolerance was significantly enhanced in high-level ...

متن کامل

A Potential Role for Mitochondrial Produced Reactive Oxygen Species in Salicylic Acid-Mediated Plant Acquired Thermotolerance.

To characterize the function of salicylic acid (SA) in acquired thermotolerance, the effects of heat shock (HS) on wild-type and sid2 (for SA induction deficient 2) was investigated. After HS treatment, the survival ratio of sid2 mutant was lower than that of wild-type. However, pretreatment with hydrogen peroxide (H2O2) rescued the sid2 heat sensitivity. HsfA2 is a key component of acquired th...

متن کامل

A Potential Role for Mitochondrial Produced Reactive Oxygen 10 Species in Salicylic Acid - Mediated Plant Acquired

27 To characterize the function of salicylic acid (SA) in acquired thermotolerance, the effects of heat 28 shock (HS) on wild-type and sid2 (for SA induction deficient 2) was investigated. After HS 29 treatment, the survival ratio of sid2 mutant was lower than that of wild-type. However, 30 pretreatment with hydrogen peroxide (H2O2) rescued the sid2 heat sensitivity. HsfA2 is a key 31 component...

متن کامل

Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance.

Many eukaryotes have from one to three heat shock factors (Hsfs), but plants have more than 20 Hsfs, designated class A, B, and C. Class A Hsfs are activators of transcription, but details of the roles of individual Hsfs have not been fully characterized. We show here that Arabidopsis (Arabidopsis thaliana) HsfB1 and HsfB2b, members of class B, are transcriptional repressors and negatively regu...

متن کامل

An autoregulatory loop controlling Arabidopsis HsfA2 expression: role of heat shock-induced alternative splicing.

Heat shock transcription factorA2 (HsfA2) is a key regulator in response to heat stress in Arabidopsis (Arabidopsis thaliana), and its heat shock (HS)-induced transcription regulation has been extensively studied. Recently, alternative splicing, a critical posttranscriptional event, has been shown to regulate HS-inducible expression of HsfA2; however, the molecular mechanism remains largely unk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 143 1  شماره 

صفحات  -

تاریخ انتشار 2007